Reply to a paper by M T Barlow and S J Taylor (Fractional dimension of sets in discrete systems)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 222627
(http://iopscience.iop.org/0305-4470/22/13/054)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:45

Please note that terms and conditions apply.

COMMENT

Reply to a paper by M T Barlow and S J Taylor

J Naudts
Department of Physics, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium

Received 6 February 1989

Abstract

It is pointed out that the different definitions of the fractional dimension of an arbitrary subset A of Z^{d}, given by Naudts and by Barlow and Taylor, are interrelated but obtained using completely different criteria.

The different definitions of fractional dimension of an arbitrary subset A of Z^{d} that are used in $[1,2]$ are interrelated. The mass dimension, the dimension introduced in [1], and the dimension introduced by Barlow and Taylor in [2] are denoted d_{M}, d_{N}, and d_{H} respectively.

Both d_{N} and d_{H} are based on forming optimal covers of finite parts of A. Given a finite subset S of Z^{d} and positive numbers b and α let

$$
m_{\alpha}(A, S, b)=\min \sum_{i=1}^{m} s\left(B_{i}\right)^{\alpha}
$$

where the B_{i} are cubes of size $s\left(B_{i}\right) \geqslant b$, and where the minimum is taken over all covers B_{1}, \ldots, B_{m} of $A \cap S$ with m arbitrary. The quantity $m_{\alpha}(A, S, b)$ is an estimate for the α-dimensional volume of the set $A \cap S$.

The criteria used to define d_{N} and d_{H} are completely different.
Criterion for d_{N} : The density of points in $A \cap S$ is $|A \cap S| / m_{\alpha}(A, S, b)$; if $\alpha<d_{N}$ then the density diverges in the limit $S \rightarrow \infty$, for all values of the coarse-graining parameter b.

Criterion for d_{H} : The α-dimensional volumes of $A \cap S$ and S are compared; if $d_{H}<\alpha<d$ then the ratio $m_{\alpha}(A, S, 1) / m_{\alpha}(S, S, 1)$ tends to zero in the limit $S \rightarrow \infty$.

Let us now assume that the mass dimension d_{M} of the set A exists. Then $|A \cap S|$ behaves as $|S|^{d / M^{d}}$ for large S. Using the relation $m_{\alpha}(S, S, 1)=|S|^{\alpha / d}$ one obtains

$$
\frac{|A \cap S|}{m_{\alpha}(A, S, 1)} \times \frac{m_{\alpha}(A, S, 1)}{m_{\alpha}(S, S, 1)} \sim|S|^{\left(d_{M}-\alpha\right) / d} .
$$

The two factors of the left-hand side are precisely the relevant quantities in the definitions of d_{N} and d_{H}. In 'nice' scaling situations one has $d_{M}=d_{N}=d_{H}$. However, if d_{H} is strictly smaller than d_{M}, as is the case for one of the examples in [2], then by the above relation one expects d_{N} to be strictly larger than d_{M}.

Both dimensions d_{M} and d_{N} are based on expressions for the density of points in A. Since densities are not additive it is not a surprise that d_{M} and d_{N} are not monotonous.

Finally, let me stress the importance in practical situations of the coarse-graining parameter b. Experimentally only a finite part $A \cap S$ of any self-similar set A is known-usually S is a cube of rather limited size. Two techniques are presented in [1] for estimating the dimension of A from knowledge of $m_{\alpha}(A, S, b)$ for fixed S as a function of α and b. They are based on the following observations:
(i) $m_{\alpha}(A, S, b)$ is expected to be independent of b whenever $\alpha<d_{H}$ (see the numerical example in [1])
(ii) for values of α slightly above d_{M} one expects scaling behaviour: $m_{\alpha}(A, S, b) \sim$ b^{α} with $\alpha=d-d_{M}$ (an example is worked out in [3]).

References

[1] Naudts J 1988 J. Phys. A: Math. Gen. 21447
[2] Barlow M T and Taylor S J 1989 J. Phys. A: Math. Gen. 22
[3] Naudts J 1987 Time-dependent Effects in Disordered Materials ed R Pynn and T Riste (New York: Plenum) p 339

