

Home Search Collections Journals About Contact us My IOPscience

Reply to a paper by M T Barlow and S J Taylor (Fractional dimension of sets in discrete systems)

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1989 J. Phys. A: Math. Gen. 22 2627 (http://iopscience.iop.org/0305-4470/22/13/054) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 01/06/2010 at 06:45

Please note that terms and conditions apply.

COMMENT

Reply to a paper by M T Barlow and S J Taylor

J Naudts

Department of Physics, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium

Received 6 February 1989

Abstract. It is pointed out that the different definitions of the fractional dimension of an arbitrary subset A of Z^d , given by Naudts and by Barlow and Taylor, are interrelated but obtained using completely different criteria.

The different definitions of fractional dimension of an arbitrary subset A of Z^d that are used in [1, 2] are interrelated. The mass dimension, the dimension introduced in [1], and the dimension introduced by Barlow and Taylor in [2] are denoted d_M , d_N , and d_H respectively.

Both d_N and d_H are based on forming optimal covers of finite parts of A. Given a finite subset S of Z^d and positive numbers b and α let

$$m_{\alpha}(A, S, b) = \min \sum_{i=1}^{m} s(B_i)^{\alpha}$$

where the B_i are cubes of size $s(B_i) \ge b$, and where the minimum is taken over all covers B_1, \ldots, B_m of $A \cap S$ with *m* arbitrary. The quantity $m_{\alpha}(A, S, b)$ is an estimate for the α -dimensional volume of the set $A \cap S$.

The criteria used to define d_N and d_H are completely different.

Criterion for d_N : The density of points in $A \cap S$ is $|A \cap S|/m_{\alpha}(A, S, b)$; if $\alpha < d_N$ then the density diverges in the limit $S \to \infty$, for all values of the coarse-graining parameter b.

Criterion for d_H : The α -dimensional volumes of $A \cap S$ and S are compared; if $d_H < \alpha < d$ then the ratio $m_{\alpha}(A, S, 1)/m_{\alpha}(S, S, 1)$ tends to zero in the limit $S \to \infty$.

Let us now assume that the mass dimension d_M of the set A exists. Then $|A \cap S|$ behaves as $|S|^{d_M/d}$ for large S. Using the relation $m_{\alpha}(S, S, 1) = |S|^{\alpha/d}$ one obtains

$$\frac{|A\cap S|}{m_{\alpha}(A, S, 1)} \times \frac{m_{\alpha}(A, S, 1)}{m_{\alpha}(S, S, 1)} \sim |S|^{(d_{M}-\alpha)/d}.$$

The two factors of the left-hand side are precisely the relevant quantities in the definitions of d_N and d_H . In 'nice' scaling situations one has $d_M = d_N = d_H$. However, if d_H is strictly smaller than d_M , as is the case for one of the examples in [2], then by the above relation one expects d_N to be strictly larger than d_M .

Both dimensions d_M and d_N are based on expressions for the density of points in A. Since densities are not additive it is not a surprise that d_M and d_N are not monotonous.

0305-4470/89/132627+02\$02.50 © 1989 IOP Publishing Ltd

Finally, let me stress the importance in practical situations of the coarse-graining parameter b. Experimentally only a finite part $A \cap S$ of any self-similar set A is known—usually S is a cube of rather limited size. Two techniques are presented in [1] for estimating the dimension of A from knowledge of $m_{\alpha}(A, S, b)$ for fixed S as a function of α and b. They are based on the following observations:

(i) $m_{\alpha}(A, S, b)$ is expected to be independent of b whenever $\alpha < d_H$ (see the numerical example in [1])

(ii) for values of α slightly above d_M one expects scaling behaviour: $m_{\alpha}(A, S, b) \sim b^{\alpha}$ with $\alpha = d - d_M$ (an example is worked out in [3]).

References

- [1] Naudts J 1988 J. Phys. A: Math. Gen. 21 447
- [2] Barlow M T and Taylor S J 1989 J. Phys. A: Math. Gen. 22
- [3] Naudts J 1987 Time-dependent Effects in Disordered Materials ed R Pynn and T Riste (New York: Plenum) p 339